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Slow switching in globally coupled oscillators: robustness
and occurrence through delayed coupling
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The phenomenon of slow switching in populations of globally coupled oscillators is discussed. This char-
acteristic collective dynamics, which was first discovered in a particular class of the phase oscillator model, is
a result of the formation of a heteroclinic loop connecting a pair of clustered states of the population. We argue
that the same behavior can arise in a wider class of oscillator models with the amplitude degree of freedom. We
also argue how such heteroclinic loops arise inevitably and persist robustly in a homogeneous population of
globally coupled oscillators. Although a heteroclinic loop might seem to arise only exceptionally, we find that
it appears rather easily by introducing time delay into a population which would otherwise exhibit perfect
phase synchrony. We argue that the appearance of the heteroclinic loop induced by the delayed coupling is
then characterized by transcritical and saddle-node bifurcations. Slow switching arises when a system with a
heteroclinic loop is weakly perturbed. This will be demonstrated with a vector model by applying weak noises.
Other types of weak symmetry-breaking perturbations can also cause slow switching.
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[. INTRODUCTION cal results obtained by a particular model suggest the appear-
ance of heteroclinic loops. Thus, in Sec. lll, we argue the
Coupled limit-cycle oscillators appear in various contextsmechanism by which heteroclinic loops are necessarily
in physics[1—4], chemistry[5,6], and biology[7-9]. Vari-  formed. Specifically, a sufficient condition will be given for
ous types of collective behavior, which arise when they formthe existence of a heteroclinic loop, and how this condition is
large assemblies, have been studied extensively over the Is8tisfied in the phase model will be discussed. In Sec. IV, we
few decades. Among the possible types of behavior, we willntroduce a specific vector oscillator model for globally
particularly be concerned witblustering and slow switch- coupled oscillators, and exhibit numerically that heteroclinic

ing, which was first studied by Hanset al.[10] in a homo- loops are formed in our vector model. We show there that

geneous population of globally coupled phase oscillatorst.he phase-coupling function, derived numerically from the

Assuming a simple form for the coupling function, they vector model by the method of the phase reduction, satisfies

showed numerically that after a long transient the systerrtlhe aboyg—mentloned condition, leading to the formation qf
. : heteroclinic loops. In Sec. V, we generalize the argument in
approaches awo-cluster statei.e., the whole population

L o . : . Sec. lll to the vector model.
splits into two rigidly rotating subpopulations, each in per- The formation of heteroclinic loops in globally coupled
fect phase synchrony. However, the stability analysis of this
two-cluster state revealed that it is linearly unstable, corre-

sponding to a saddle point if seen in a corotating frame of number

reference. The seeming contradiction here was interpreted in density

terms of the formation of a heteroclinic loop connecting this 05

two-cluster state and another two-cluster state which was ob- 0 750
tained simply by a constant phase shift of the former. In fact, o

when this heteroclinic loop is attracting, the trajectory stays
longer and longer near these saddle points, so that the nu-
merical roundoff error finally forces the system to stay at one
of the saddles forever. This interpretation was supported by 0
the fact that when small external noise is included the system

is no longer fixed at a saddle point but starts to repeat slo FIG. 1. Slow switching exhibited by the model in RET0]. The

o . . Vﬁgure displays the time evolution of the number density of the
switchings between the pair of saddlese Fig. 1. Although oscillators as a function of the phase. The whole population, which

these findings are important, explanations still needed as "\Bas initially almost uniform, splits into two subpopulations, each

why the heteroclinic loop arises inevitably and persists "0-aImost converging to a point cluster. After some time, however, this

bustly against our common belief in its structural instability. seeming convergence turns out to be unstable, and is followed by a
In the next two sections, we restrict our consideration tOyeriog of scattering, but this again is followed by a period of con-
the phase model. In Sec. II, we discuss in some detail th@ergence, and so forth. This form of alternation between the two
stability condition of the two-cluster state. Existing numeri- characteristic periods of the convergence and dispersion of the clus-
ters is called slow switching. The phase-advanced and phase re-
tarded cluster at the end of one cycle becomes phase retarded and
*Email address: kori@ton.scphys.kyoto-u.ac.jp phase advanced at the end of the next cycle.
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oscillators may seem to be a pathological phenomenon 1
which can occur only exceptionally. However, the time delay

in coupling can easily cause a bifurcation from perfect syn-

chrony to the formation of a heteroclinic loop, and this will

be discussed in Sec. VI. The method of phase reduction pro-

vides a clear understanding of why this is actually possible. 05 - |
Slow switching becomes persistent when oscillators are sub- o) —
ject to weak external noise, which will be discussed in Sec.
VII by using a vector model. There we will also show that
the same phenomenon can also be caused by other types of
randomness.

0 500 1000 1500
Il. HETEROCLINIC LOOP IN THE PHASE MODEL t

Populations of weakly coupled limit cycle oscillators can  FIG. 2. Long transient of the order parameter after which the
be described by the phase moffg]. Suppose that the oscil- whole population converges to a two-cluster state.
lators are identical, each interacting with all the others with

equal strength. Then the corresponding phase model is ex- d

pressed as gi eV =0+ K{(1=p)'(0)+pl'(—x)}, (5
d N wherex denotes the phase difference, ixes o — g . Sub-
awi(t):“”L N 121 Tl =401, @) tracting Eq.(5) from Eq. (4), we obtain

where i;(t) (0=<y;<27r) is the phase of théth oscillator E _ _ _ _ _

(i=1,...N), o andK are positive constants, ahx) is a dtx(t) K{2p=DI(0)+(1=p)I() =PI (=)}

coupling function with 2r periodicity. (6)

Hanselet al.[10] analyzed the case of a particular form of ] )
the coupling function Sincex is constant in the two-cluster state, we have
- i I'(0)-I'(A)

I'(x) sin(x+1.25+0.25 sir{ 2x). (2 p(A)= )

2r(0)-I'(A)—-TI'(=A)°
They showed by numerical simulations that oscillators with
random initial distributions are assembled to form two sub{p,A) exists withp satisfying 0<p<1. Substituting Eq(2)
groups each in perfect phase synchrony, but with a constaimto Eq. (7), we obtain the condition for the existence of
mutual phase difference. The collective behavior of the sysfp,A), and this is displayed graphically in Fig. 3. takes
tem can conveniently be described in terms of the order pahree values for a giverp within the rangep,<p<1l
rameter defined by ~Pmin, Wherepmin is defined by the minimum value @fin
the range &<A<m. These three states are denoted by
(p,A"), (p,—A")=(1-p,A"), and p,A"), whereA” and
: (3 A" are understood to be positive aji”| to be larger than
A’ andA”.
Its value is 1 for perfect synchrony, and O for perfect inco- T1he eigenvalues of the stability matrix are given by
herence. A time trace of the order parameter for the above
model is displayed in Fig. 2. Oscillators belonging to the Ao=0, ®
respective groups are identical in phase, and this pair of point
clusters rotates rigidly at a constant angular frequency. The
mutual phase difference is denoted by Hereafter we call
the phase-advanced and retarded clusteend B clusters,

N

1
O(t)=| 2, exdiv]

respectively. Let the fraction of the oscillators belonging to 1-Prmin
the A cluster bep. Such a two-cluster state may thus be 0.5
specified by p,A), whereA is within the region— 7<<A P

< by convention. This set of values may generally differ P min
for different initial conditions.
The existence and stability of the two-cluster states can be

analyzed as follows. Consider a two-cluster state with phases 0 i ' '
¥ and g . Equation(1) then becomes T A g A A"m
d - )
FIG. 3. Condition for the existence of two-cluster statesakes
— () =0+ K{pl'(0)+(1—p)I"(x)}, 4 . L
dt Y=o {PT(0)+( PIT OO} @ three values for a givep within the rangep min<P<1—Pmin -
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1 . (N-1)-dimensional phase space
1-cluster state (1-p, A", attractor ofEBUFEAB
05+t
0
-0.5 o (p, A" (p,A), attractor of EAUEAB

FIG. 5. Schematic representation of the structure of a hetero-
FIG. 4. Eigenvalues about two-cluster states as a functian of clinicloop. (p,A") and (1-p,A") are the attractors of the invariant
All two-cluster states are unstable here. Note that the eigenvalued!bspac&E,UExg andEgUE g, respectively.

N\, and X3 are negative for the statep,A’) and (1-p,A"). ]
obey completely the same dynamics thereafter, namely, a

N =K{pI'' (0)+(1—p)I'"(A)}, 9 point cluster remains a point cluster forever. This property
PTHOATPITA) ® will turn out to be crucial to the formation of heteroclinic
A,=K{(1—p)T'(0)+pl'(—A)}, (10 loops.

We now argue how phase modé&) can form heteroclinic
loops which are structurally stable. A generalization to the
vector model of the limit cycle oscillators will be given in
the subsequent sections. The existence of a heteroclinic loop
connecting p,A’) and (1-p,A") is clear if the following
properties are satisfied:

Ag=K{(1=p)I'"(A)+pl'" (- A)}, 11

with multiplicities 1, Np—1, N(1—-p)—1, and 1, respec-
tively. I'' (x) is defined asd/dx)I"(x). A, which vanishes
identically, always exists due to the invariance of E4).
with respect to a constant shift ¢fy andg. A, and\, are
associated with the fluctuations of the individual oscillators
belonging to theA cluster and the cluster, respectively 3 Y)Y (1—Dp.A") i lobal attractor ofVY(p. A’

corresponds to the fluctuation i. Figure 4 displays the (Y)(1=p,A") is a global attractor oMWi(p,A"),

eigenvalues versua obtained using Eq(2) with K=1, = yherew!(p,A) represents the unstable manifold gf,4).
which shows that all two-cluster states are unstable. It iye work with an (N— 1)-dimensional phase space through-
important to note thatf,A’) and (1-p,A") are saddles oyt by which the degree of freedom associated with a rigid

(X)(p,A’) isaglobal attractor ofWY(1—p,A"),

which have negative eigenvalues pf and \5. (P,A"),  rotation of the entire system is ignored. For an aid to the
however, has a positives, which can be verified by the ynderstanding of a slightly complicated situation, it would be
propertyXzoc(d/dA)p(A). appropriate to display in advance a schematic picture of the

Paradoxically, the system converges to unstable solutiongeteroclinic loop under consideration in Fig. 5, whare,
This counterintuitive fact may be understood if we assumg\i”, and\” (i=1, 2, and 3 are the eigenvalues op(A’),

that the pair of saddlep(A’) and (1-p,A”) are connected 1—p. A" d b A" tivelv. The definition o
heteroclinically [4,10]. All numerical results in Ref[10] EXZ% B)’aﬁgAg)), wiI?’b[ae;?veecn“llaetZ.r € definition dtx

sgpport this assumption. Although the heteroclinicity is con- Our argument will be based on the assumptions that there
sidered _structurally unstable, this does not seem to apply 9re three two-cluster states in the ramge,<p<1-— Py, and
the particular class of systems under consideration. In Se‘fhat the eigenvalues associated with these solutions satisfy

[l it will be confirmed that @,A’) and (1-p,A") are in : i . ifically. th .
fact connected heteroclinically through amvariant sub- gzrt:ﬂrr;igz?;zlgdp;gr;?)ﬁéev\z.SpeCI ‘cally, the assumptions may

spaces and it will be argued how this structure is stably
maintained. (a) (p,A’), (1—p,A"),and (p,A"”) exist,

Ill. STRUCTURE OF THE HETEROCLINIC LOOP (b) A{>0,

We first note a particular symmetry of our phase model

given by Eq.(1), which is expressed as (¢) A;<0 and A3<0,

d . (d) A\1>0,
a{lﬂi(t)—¢j(t)}|¢i(t)=¢j(t):0 forall i,j. (12

(e) A3<0 and \3<0,
The above equation shows that, when the phases of some

oscillators are found to be identical at some time, they will(f) A3>0,
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(g) N, ofall two-cluster states are positive, (x1) and(x3) give the sufficient conditions fqiX) to hold. A
similar discussion can be developed to deri¥@ via the
(hy I'"(x=0)>0. assumption

2 ,A") is a unique attractor of E\UEpg.
Here we assumed that bdip andN(1—p) are larger than (y2) (p.A") a AT TAB

1, so that three independent eigenvalne¢i =1, 2, and 3  Note that p,A”) gives a source point lying betweep,’)
exist. Note that all the assumptions are satisfied by (Eg. and (1-p,A”) in the phase space, as displayed in Fig. 5.
with the coupling function given by E@2), as stated in Sec. There still remains a problem about the validity of as-
I. sumptions(x2) and(y2). It is sufficient to consider assump-
Consider the tangent space arounX’). (p,A’) has tion (x2) only. If the type of attractor is limited to the two-
Np—1 degenerate eigenvalues givenXdy. Thus the corre- cluster state, then it is obvious that{}p,A”) is a unique
sponding eigenvectors span ahg—1)-dimensional un- attractor ofEgUE,g, as can be confirmed by propeity).
stable eigenspace which is denoted By. Similarly, the = How about the possibility for a one-cluster state, namely,
eigenvectors  corresponding to A, span an perfect synchrony, to become an attractor? The eigenvalues
[N(1—p)—1]-dimensional stable eigenspace which is de-of the one-cluster state areN¢ 1)-fold degenerate, and
noted byE,. An eigenvector corresponding 1o, spans the given by KI''(x=0), which is positive by the assumption
one-dimensional stable eigenspaggg. In particular, the (h) so that there is no stable manifold of one-cluster state.

following statements hold: How about the stability structure af(=3)-cluster states?
They could be attractors of the invariant subspaces for the
(b') Eg is an unstable subspace 6p,A’). same reason as the two-cluster states, even if they are un-

stable solutions. In the case of three or more clusters, how-
\} corresponds to the fluctuations which occur in the €Ver, the resulting heteroclinicity would be even more com-
cluster (i.e., the phase-advanced clusteFhus the eigens- Plicated. Numerical simulations in Sec. I, however,
paceEg is associated with the disintegration of theluster, ~ displayed the simple heteroclinicity between pairs of two-
while the B cluster remains a point cluster. Similarly, tBe ~ cluster solutions, implying the validity of the assumption
cluster is disintegrated in the eigenspdgg, while the A (X2 and(y2) in Eq. (1) with Eq. (2). _
cluster remains a point cluster there. In the spigg, in _Convergenceto the heteroclinic loop can be discussed
contrast, these clusters remain point clusters while their muSimilarly to the case of a heteroclinic orbit in a two-

tual distance changes. Since a point cluster must remain §mensional phase space, which was discussed in[Ref.

point cluster at any time, as noted at the beginning of thigl e result is that the system which is initially close to a

section, the spacEsUE,g, on which theB cluster is a heteroclinic loop converges to it provided
point cluster, gives aimvariant subspacef dimensionNp. v
Similarly, EAUEag, on which theA cluster is a point clus- )‘1)\1<1
ter, is an invariant subspace of dimensingl—p). Note AoNY
that the unstable manifold/!(p,A’) must coincide withEg

in the vicinity of (p,A’). This fact, combined with the ob- If this condition is satisfied, the heteroclinic loop is attract-
vious fact thatEg is included in the invariant subspace ing. In numerical simulations, this convergence is established
EgUEag, leads to the following statements which hold glo- in a finite time due to the roundoff errors.

(13

bally. Although we have assumed conditiof@s—(h) so far, our
discussion is expected not to rely so heavily on the specific
(x1) WYp,A’) isincluded by the invariant subspace form of I'(x). In fact, these conditions may be satisfied for a
broader class of the coupling function. For instance, they are
EgUEas. satisfied if we assume a simple shape of the coupling func-

tion such thal’(x) decreases in the ranger<<x<<0, while
Arguments parallel to the above can be developed arounid increases otherwisgsee Fig. 6. The reason is the follow-
(1-p,A"), i.e, the state where thB cluster is phase ad- ing. The corresponding shape pfA) turns out similar to
vanced byA”. From the assumed property), EsUE g IS the curve in Fig. 3, so that we can defipg;, similarly. For
the stable subspace of {Ip,A"”), which can be restated as a givenp satisfyingp,,in<p<1—pPmin. W€ obtain three states
(p,A"), (p,—A")=(1-p,A"), and @,A"). N, of each

(¢') (1—p,A") isan attractor of EgUEg. (p,A>0) is positive becausd’ (0=x<m)>0. We can
verify N3<<0, A3<0 and\3 >0 through the property that;
Therefore, if is proportional to ¢/dA)p(A). The one-cluster state turns
out to be unstable sincé’(0)>0. Hence we have con-
(Xx2) (1—p,A”) is a unique attractor of EgUE,g, firmed assumption&@)—(h) except fora,,A\5<<0. For the last
properties to be satisfied, we need one more assumption, that
then we may assume is, '’ (0) is not so large as to admit a regionivhere both
N5 and \j are negative. Such a region is expressedoby
(x3) (1—p,A") isaglobal attractor ofEgUE5g . <p<1l-p*, wherep* satisfiesp,<p*<0.5. Then, via
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FIG. 6. Typical shape of the coupling function which admits 0 2000 4000 6000
heteroclinic loops. This shape lead to conditigas-(h) except for t

N5 \5<0. The last property also holds T (0) is not too large. . .
272 property © g FIG. 7. Time series of the order parameter. The order parameter

O is conveniently defined in the following way. Let;
(j=0,1,2 .. .) denote the time at which the representative point of
the jth oscillator crosses a given secti@ in the one-oscillator

. phase space. The order parameter at timé, is defined as
In previous workg44,10], the shape of the employed cou- N
pling functions satisfied this property. Our model, discussed O(t:tN):E Z exr{iZW(tj_to)
in Sec. 1V, also fulfills this condition in the weak-coupling Nj tn—lo

assumptiongx2) and (y2), we obtain sufficient conditions
for the existence of a heteroclinic loop betwegn4’) and
(1—p,A") within the rangep* <p<1-p*.

=1

limit where the phase description is valid. Thus we may re-as a generalization of E¢3). Since the oscillators cross again

gard the coupling function with this property of the shape asand again, the order parameter at discrete timesty (k

atypical class which admits heteroclinic loops. =1,2,...) may belefined similarly. Note thaD(t)=1 when the
The existence of a phase space structure yielding a hegescillators are synchronized perfectly, a@(t)=0 when their

eroclinic loop has thus been confirmed, which can be sumphases are uniformly distributed.

marized as follows. For a given coupling functibifx), we ) ) )

can easily verify whether condition@—(h) are satisfied. HereX;, F, andG arem-dimensional real vectors, arklis

Among these conditionga)—(f) constitute a necessary con- & positive constant. Note that E@.4) satisfies the condition

dition for the existence of a heteroclinic loop between d

(p,A") and (1-p,A"), while conditions(g) and(h) support — X=X (D}x iy=xn=0 forall i,j, (15

assumptiongx2) and (y2). One may also consider the case dt ' 1

where the roles ok ; and\, are reversed. The saddle con-

which is similar to Eq(12). Suppose that the local dynamics

which exists for the symmetry of equations of motion, or Eq.IS W0 dimensional, i.eX=(x.y), and the specific forms of
(12). Thus we conclude that the heteroclinic loop is robustF andG are given by
under such small perturbations that maintain the homogene-

2_ 3 L
ity of the population and the symmetry of the global cou- F(X-):(FX) _ =X YT 16
pling. 7Ry (1-5x -y, '
IV. COUPLED LIMIT CYCLE OSCILLATORS GOX, X )= ( Gx) _(Xj _Xi> a7
P 6, o '
y

Our argument on the existence and structural stability of
the heteroclinic loop developed in Sec. Ill was based on theé

phase model, with some assumed properties of the phas ose mode]11], which was originally proposed for a neural

coupling function. In this section, we discuss a specific . . . : .
Ping P oscillator. Without coupling, i.eK=0, each unit becomes

coupled oscillator model in which heteroclinic loops are ™"~ . o
formed. From the model, a phase-coupling function of theOSC'"altory if —11.5<.<0.8[12]. The coupling is assumed

desired properties for the existence of heteroclinic loops id0 be diffusive, and in terms of neurophysiology this corre-

derived through the method of phase reduction. To ouElpcinds to the electrical synapse formed by gap junctions
: 3].

knowledge, the existence of a heteroclinic loop associate
9 P The parameter values are setke=0.1, N=100, andu

with slow switching has never been reported for vector mod- N
els of oscillators. =—1. The intrinsic frequency then becomes=1.0. We

Consider a general system of coupled oscillators whiclfhooze random |n|t!al gondlftlclnlns. SOTrEe nun:erlcal results Ob;
are identical and all to all coupled: ained are summarized as 1otlows. 1he System converges ar-
ter a long transient to a two-cluster state which is periodic in
q K N time. Figure 7 displays a time series of the order parameter.
—X:(t)=F(X,)+ — 2 G(X; X)) (14) The_rglative popylation of the clusters generally depends on
dt N =1 the initial condition. Convergence to the two-cluster state

he corresponding equatiot=F is called the Hindmarsh-
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0.15

Ix)

0.1
005
0 L
- 0 T
X
. . - pr
FIG. 8. Coupling function of the reduced model. The minimum
of I'(x) appears at a negative Such a shape df is typical when FIG. 9. Lyapunov spectrum plotted agaipsFrom the figure, it
heteroclinic loops exist. can be seen thai,;,=0.42. Solid lines show the eigenvalues ob-

tained by the phase reduction, with excellent agreement with the
does not imply its stability, and is rather due to numericalspectrum of the original system.
artifacts. Actually, when very small perturbations are given

to the oscillators independently, the clusters start to disinteya|yes.A ;s corresponds to fluctuations within tifecluster,

grate, .im.plying their linear instability. Such a behavior' i_s and each eigenvalue of this group N~ 1)-fold degener-
very similar to that of the phase model when heteroclinicy,, Similarly,A »s corresponds to fluctuations within tiige
loops exist. We now show that the phase reduction of the, <o and éach eigenvalue theré g 1—p) — 1]-fold de-

aptovebmo:jjel prt?]duces a ph?S?EOUp:'I?ghfutnCt'op WhI'Ch a generateA ;s is associated with the relative motion between
mits, based on the argument ot Sec. 111, heteroctinic OOpS'tﬁle clusters.A, is identical to 0, resulting from the time

Coupled oscillators can be reduced to the phase mode] . .~ . . .
U .y . eriodicity of the solutions. The maximum value &fs (i
[Eq. (1)] when the coupling is sufficiently wedk]. There is El 5 azd 3is denoted byA™, and their numericzil \(/al-
’ ’ | ’

a general formula for the phase-coupling function, and for a re displaved in Eia. 9
given dynamical-system model, this can be computed nuU€s are dispiaye 9. 5 -
The argument on the structure of a heteroclinic loop con-

merically. We did this for Eqs(14), (16) and(17). The cou- ) .
pling functionI'(x) obtained is displayed in Fig. 8, which 25_252? tgh(fﬁas{t?rgesincd I(IE:: Q/i/:tgg?/vcﬁgv%etgev\\//glrclip\(/av(ijthq?rgts
shows a typical shape admitting heteroclinic loggse Fig. (mN—1)-dimensional phase space, whereby we employ a

6). Two-cluster solutions were sought, and their stability ¢ f tion t the inel td £ f
analysis was done through E#)-(11). Then we confimed 3 TE L 0 0l KT oty rotation of the whole popula-
hat th | satisfi itiqag—(h) for th : X . ) i
that the reduced model satisfies conditidas-(h for the tion. The eigenspacds, andEg, associated with ;s of the

ist f a het linic | I it f .
existence of a heteroclinic loop and also conditi@3) for b state and the (1 p) State, are nown{(N(1—p)—1} di-

its stability. ) . : / :
y mensional andn(Np—1) dimensional, respectively, while
the eigenspackE g associated with\ 3s is (2m—1) dimen-
V. STRUCTURE OF THE HETEROCLINIC LOOP IN sional. Then the argument in Sec. IlI still holds if we replace

VECTOR MODELS \; with A", Note that we assume the existence of an un-
The preceding arguments clarify the nature of the heteroStable state corresponding tp,8") which is hard to obtain

clinic loop in the framework of the phase model. In this numerically. o _ o
section, we show that such arguments can be generalized to 1h€ €igenvalued™"are the ones which should coincide

the original model for coupled limit-cycle oscillators in vec- With A; in the phase-oscillator limit. As the coupling be-
tor form. comes stronger, the heteroclinic loop can persist as far as the

It would be appropriate to start to reconsider the modegXistence and stability propertigs of the two point c!usters are
given by Egs(14), (16) and(17). Under suitable initial con- un_changed. Generally speakmg_, stronger couplllng makes
ditions, we obtain various two-cluster states. They correP0int clusters more stable. In Fig. 9, this effect is already
spond to the solutionsp(A) with A;<O in the phase- S|zable_ forK=0.1. As K becomesO(1), the t_vvo-cluster
coupling limit, and these two-cluster states will be denotedbtate gives way to a one-cluster state by which the hetero-
by p states. Also, clusters corresponding to the phaseC|!n!C loop d'lsappears. We expect in gengral that the hetero-
advanced and -retarded clusters will be called AhandB  Clinic loop dl_sappears when the coupling is so strong that the
clusters, respectively. For a givam state,mN Lyapunov  Phase description completely breaks down.
eigenvalues can be computed numerically, whare2 for
the model under consideration. They can be classified into
four groupsA g, A;s, A,s andAzs, and they will degener-
ate respectively into\; (i=0, 1, 2, and 3 in the phase-
coupling limit. Note that each of ;s and A,s is composed In globally coupled identical oscillators, a one-cluster
of m eigenvalues, while\ ;s is composed of 21— 1 eigen- state is the easiest state to appear. This can be illustrated by

VI. APPEARANCE OF HETEROCLINIC LOOPS
THROUGH DELAY-INDUCED BIFURCATIONS

046214-6



SLOW SWITCHING IN GLOBALLY COUPLED. .. PHYSICAL REVIEW E63 046214

the following form of coupling: 0.3

Assuming Eqs(14), (16), and(18), we obtain a stable one- Tx+wr)

cluster state even K is very small. We may generally ex-

pect that heteroclinic loops cannot exist when the one-cluster 017y

state is stable. In the above model, it can be shown that

time-delayed coupling causes an instability of the one-cluster

state, which at the same time is accompanied by the appear- or .

ance of the heteroclinic loop. The corresponding bifurcation -z 0 .
is a so-called transcritical bifurcation. x

Consider uniformly delayed coupling FIG. 10. Coupling functions. The solid line is obtained from

Egs. (14), (16), and (19) with 7=0, while the dotted line is ob-
tained just by a phase shift of solid line byw 7. The effect of the

h d he del hat th delay is equivalent to a simple modification of the coupling function
wherer denotes the delay. Note that the symmetry Pfopef% the weak-coupling limit. The modified coupling function is a

[Eq. (19)] still holds when the coupling involves a uniform ynica| shape admitting heteroclinic loops, provided the condition
delay of the form of Eq(19). We will show some numerical >xo/w is satisfied.

results obtained for the system given by E@sl), (16), and
(19), where the parameter values are the same as in Sec. IV.

Without delay, the system under various initial conditions —x(1)=K{(2p—1)['(w7)+(1-p)['(X+ wT)
immediately converges to a one-cluster state. A& in- dt
creased, the one-cluster state persists up to a critical value —pI(—x+wn)}. 22

7., beyond which the cluster splits in two and at the same
time heteroclinic loops are formed. In this case of the paramypq aphove equation has a trivial solutier 0. For smalix

eters, this critical value is about 0.18. the right-hand side can be expanded in powers. &fe find

This result can be understood by a phase reduction of OUf,5; hrovidedp+0.5 the right-hand side involves a® term

model which is applicable when the coupling is weak. The,g the |owest nonlinearity. This means that the trivial solu-

reduced model takes the form tion loses stability via a transcritical bifurcation. This occurs
q at =Xy/w. We also find that as is increased a saddle-node
_ R B B bifurcation occurs slightly before the transcritical bifurca-
ai=ety ,Zl PO =dy(t=nl @20 5 For 7>Xq/w, the stable manifolds associated with the
saddle-node and transcritical bifurcations connect smoothly
wherew=1.0 atu=— 1. Since the second term on the right- @hd form a heteroclinic loop. Lst (2) denote a certain di-

hand side is much smaller than the first term by assumptiorfection taken orEg (E,). How the bifurcation in question
Eq. (20) is further reduced to the form occurs is explained schematically in Fig. 11. The same struc-

ture of bifurcation leading to the formation of heteroclinic
d KN loops holds for some range pfwherex; and\} are both
azpi(t)=w+ N 2 () — (D) + o] (22 negative. Note that gi=0.5 the term of? vanishes so that
=1 a pitchfork bifurcation occurs at=xy/w and no saddle-

N

Thus there is no explicit delay in coupling, while its effect

has now been converted to a phase shift of the coupling x Y ) (\\l\letexi(())zhmc
function by w7. The situation is illustrated in Fig. 10. The : IR P

stability of a one-cluster state depends entirely on the sign of >
I''(w7). Thus the one-cluster state is stable for small e LRLEEEEP R TR Y
which admitsI'’ (w7)<0. As 7 is increased, the one-cluster b (R
state becomes less stable, andyatx,/w, it becomes un-
stable where is defined as the value afwhich minimizes
I'(x). Note thatr., obtained numerically, would agree with
Xo/w(=0.13) for sufficiently smallK. For 7>x,/w, the
coupling function assumes a typical shape under which a
heteroclinic loop exists. Ar=0.3, for example, conditions £, 11, Schematic representation of the bifurcation structure.
(@)—(h) and (13) are satisfied in this reduced model. This The trivial solutionx=0 loses its stability at= 7, via a transcriti-
transition occurs through a transcritical bifurcation. cal bifurcation. Two solid lines existing for> 7. correspond to
Let x denote the mutual phase difference between thep,A’) and (1-p,A”), respectively, each being unstable with re-

clusters. The equation obeyed kyan be derived similarly spect to they or z direction alternately. A heteroclinic loop is
to the derivation of Eq(6), and takes the form formed between these two solutions, as explained in Sec. lll.

T<tc Tc T<Tc
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node bifurcation occurs before. A heteroclinic loop is formed 1 F
similarly to the case op+0.5. i

In coupled oscillators, the appearance of the heteroclinic o)
loop may seem to be pathological. The results in this section,
however, imply that the heteroclinic loop appears in a broad

. . - . 0.5
class of weakly coupled oscillators, including those studied S —
so far, provided a uniformly delayed coupling is introduced. 7=0.3 ——
Assuming a simple coupling such as E&8), we find that
when the assemblies are composed of relaxation oscillators,
their phase coupling function is often characterized by a U ' '
curve which sharply decreases in a small region while it 0 2000 4000 6000
gradually increases otherwise. Thus heteroclinic loops are t
expected to arise in homogeneous assemblies of relaxation F|G. 12. Time series of the order parameter for a noisy system.
oscillators. The solid line shows slow switching, where a new time scale of
dynamics appears.

VII. SLOW SWITCHING

. - . ... _parametelO, wherer=0.1 andp=10"". It is seen thaD
When the system involves heteroclinic loops, it exhibits astays near 1. For>r,, this highly coherent cluster be-

remarkable dynamics when perturbed weakly. In the analys%OmeS unstable, ar@ begins to oscillate. After a long tran-

of a mod_el O.f the form of Eq(l), I—!a_nselet aI._[lO] applied sient, the system comes to exhibit a slow switching between
week noise independently to individual oscillators, and ob-a pair of two-cluster states. For the most part the system
served. thg appearance O.f avery long time scale dependmg c%?ays close to one of the né)isy two-cluster states, which is
the noise mte_nsm(see Fig. .J‘ Since the time scale _here 'S followed by a short period of cluster disintegration, then by
associated with an alternation between two collective stategonvergence to another two-cluster state. This is demon-

(I.e., a pair of two-cluster statkshey called this character- & o0 Fig. 14 forr=0.3. It is clear that the collective

istic behavior of the systerslow switchingand gave a suc- dynamics is then characterized by a new time scale corre-

cessful explanation for it in terms of a weakly perturbed . ) oo : i
et X . . sponding to this slow switching. We define the period of
heteroclinic loop. Their explanation may be summarized as. ., . : :
L . A . Switching T as the average time between the two successive
follows. If a heteroclinic loop is attracting, i.e., if E(L3) is

D local minima ofO sufficiently after the transient. The loga-
satisfied, then the system approaches one saddle and theny . . o

: ! - . rithmic dependence of on the noise intensity is clear from
other alternately. Without noise, the minimal distance from

each saddle should decrease exponentially in time. Witr'1:'g' 13. The steepness of teversus the Inr curve after

noise, however, this distance will fluctuate but remain finitelmear fitting is estimated 83/ln o]=20, which suggests that

max H H H max
typically within the ordero, the square root of the variance Ay of_lth|s dglaye((alj CS)UPE“ngg mpgelhs ak;}out 0?15#[ dcan
of the noise. In any case, the system for the most part sta;%e_ eafS|y _estln(;_atel 3(/1 . g ) with the p base-s~| ed cou-
close to one saddle or the other, so that the dynamics couffind function displayed in Fig. 10. We obtaky ~0.065 at

_ ; ; ; ; ax
be characterized dominantly by the local properties around=0-5, which is close to the above estimation A

the saddles. The time intervailfor a stay near a saddle may =0-05. Note that the amplitude effect mak&§™* smaller
be estimated as than\ similarly to the case of Fig. 9.

Slow switching is thus the fate of the system when the
1 heteroclinic loop is perturbed weakly. Besides external noise,
T~—+Ino, (23)  a slight violation of the symmetry properfqg. (15)] is ex-
! pected to cause the same effect. Imagine a particular case
where\, is the eigenvalue of the most unstable direction.where a heteroclinic loop is present under symmetry condi-

Thus the period of the switching is logarithmically depen-

dent on the noise intensity. 600 | ]
By including noise, Eq(14) is generalized as e
N 500 | T
SX(O=F(X)+K2, GX X)) +o&(1), (24
dt =1 T 400 | L
where & is Gaussian white noise with variance 1 and the 300 | 6
parametewr, assumed to be small below, indicates the inten- e
sity of noise. Let us now consider specific forms FoandG 200 . . . . l
given by Eqs(16) and(19), respectively, where the param- 1075 1077 10° 10" 10°1

eter values are the same as before. Some results obtainec
numerically are the following. For€ r<r, the oscillators
localize in a small phase range, which we call a noisy one- FIG. 13. Switching period vs noise intensity. The line is a linear
cluster state. Figure 12 displays a time trace of the ordefitting of the data.

o
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600 F ' ' ' rather easily in an assembly of relaxation oscillators, so that

something similar may be expected for homogeneous neu-

500 | T 1 ronal assemblies subject to a constant external current. If we
o associate slow switching with biological rhythms, the prop-

400 | o . erty of this phenomenon yields many suggestive ideas. One
r e remarkable feature of slow switching is that a system in-
300 | p i volved a much longer time scale of dynamics, with which
P collective order periodically varies, in regard to the intrinsic
200 | 9 | period of oscillation. This fact is reminiscent of circadian
a , , , rhythms. One of the intriguing subjects there would be

1075 107 10°° 1o 10713 rhythm splitting[14]. A more physiological model should be

considered for the study of biological rhythms, and a study in
p this direction is now in progress.

FIG. 14. Switching period vs the square root of the variance of |t may appear that the heteroclinic loop in question is
the parameter. The line is a linear fitting of the data. something which could not go beyond some mathematical
curiosity, because the symmetry propefigg. (15)] on
which it crucially relies would be more or less violated in
real systems. However, the associated phenomenon of slow

between which a heteroclinic loop is formed in the symmet-SWitChing seems to be of much greater physical relevance,
fic case, still exists. Although a genuine heteroclinic loopP€cause strict symmetry need not be required there. Since

could no longer exist in the asymmetric system, the unstabl8°'S€: heterogeneity, anq ((jj_elay are fcoPmonp!achg n maclgo—
manifold of one saddle will come close to the other saddle. HSCO”pl')C Zystemsa .sorf?e n Ilcat%n IO ;‘,ow SW't]f: mghcog |
they are sufficiently close in phase space, the situation /€' P€ detected in the real world. In the case of mechanica

quite similar to the case of applied weak noise, leading tgscillators, for instance, it would not be difficult to obtain
slow switching ' oscillators which are almost identical. Global coupling

- : P ight also be realized through an electric cirduib], a vi-
As an example, letx in Eq. (16) be Gaussian distributed, migr i '
with variancep?. Numerical simulations actually show slow brating :oard[lﬁ], lthe sufrfacc: mo“?}” qf V\llate['ﬂ.]’ and d
switching without noise. Figure 14, displaying the periods0 on. A certain class of surface chemical reactions under
versusp, shows again a logarithmic law. The steepness opsc!llatory conditions may provide globally coupled identical
| T/In p| is estimated to be 20, which implies that the gais oscillators.

now the order ofp. Similar results are obtained when other corlgesrfgrzi{a??/t/ehrésr;“g ];:]erggterncgr eO;kiSrl]OW (asmtr%r;tri]gn\;vltljlekc):g;ne
parameters, e.g., the delay are randomly distributed. We Y y gp

can also break the uniformity in the coupling, and consider astronger. At the same time, the amplitude of the.oscnlatlng
: : order parameter become smaller as the perturbations become
slightly random oscillator network. L . )
stronger. The switching phenomenon is expected to vanish
when the strength of the perturbation exceeds a critical value,
after which the order parameter of the system becomes sta-
VIIl. CONCLUDING REMARKS tionary. Realistic examples of slow switching, if any, would
correspond to the case of strong perturbations. If slow
witching survives the strong perturbation, and its frequency
)ecomes comparable to the intrinsic frequency of the oscil-
lators, the dynamics would become even more complicated
(ﬂ,“e to the nonlinear coupling between these modes of mo-

closed into a heteroclinic loop. Such heteroclinic loops arg'on of comparable time scales. A statistical mechanical ap-

formed stably. Although we commonly consider heterocli-Proach tol th'sd prhoblem WOL:Id be '.rt‘tﬁfes“”g- .Aﬁ far aﬁ \t/)ve
nicity structurely unstable, the present heteroclinic Ioopia\’e analyzed, NOWEVEr, Slow SWItChing vanisnes wetl be-

arise stably in coupled oscillator models, provided that thé°"® its frequency comes close to the intninsic frequency. It
symmetry conditioEq. (15)] is satisfied. ,It can be under- would also be interesting to find coupled-oscillator models

stood from our argument that the conclusions do not rely s hich have more robust structures of slow switching with

heavily on the specific form of coupled oscillator models. Infespect to the symmetry-breaking perturbations.

particular, with delayed coupling, we expect that heteroclinic

loops appear in a much broader class_ of cqupled oscillator ACKNOWLEDGMENT

models. We found that some models, in which unstable so-

lutions had not been considered important, actually form het- The authors thank T. Mizuguchi and T. Chawanya for

eroclinic loops by introducing delay in coupling. fruitful discussions. They also thank H. Nakao for a careful
As we stated briefly in Sec. VI, heteroclinic loops appearreading of the manuscript.

tion (15). The system is now perturbed slightly so that con-
dition (15) is slightly violated. Assume that a pair of saddles,

Slow switching arises when a system with heteroclinic
loops is weakly perturbed. The structure of heteroclinic loop
in coupled oscillators has been confirmed in the present p
per, which is summarized as follows. A pair of unstable two
cluster states can be attracting since their unstable manifol
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